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Abstract: Microbial necromass carbon(MNC) is a significant source of soil 26 

organic carbon(SOC), the quantitative contribution of MNC to distinct SOC fractions 27 

and its regulatory mechanisms across various grassland types remain largely 28 

unexplored. This study through a comprehensive investigation of soil profiles (0-20 cm, 29 

20-40 cm, and 40-100 cm) across four grassland types in Ningxia, China, encompassing 30 

meadow steppe (MS), typical steppe (TS), desert steppe (DS), and steppe desert (SD). 31 

We quantified mineral-associated organic carbon (MAOC), particulate organic carbon 32 

(POC), and their respective microbial necromass components, including total microbial 33 

necromass carbon (TNC), fungal necromass carbon (FNC), and bacterial necromass 34 

carbon (BNC), and analyzed the contributions to SOC fractions and influencing factors. 35 

Our findings reveal three key insights. First, the contents of MAOC and POC in the 0-36 

100 cm soil layer were in the following order of magnitude: Meadow steppe 37 

(MS) >Typical steppe (TS) > Desert steppe (DS) > Steppe desert (SD), with the average 38 

content of POC was 9.3 g/kg, which was higher than the average content of MAOC 39 

(8.73 g/kg). Second, the content of microbial TNC in MAOC and POC decreased with 40 

the depth of the soil layer, the average content of FNC was 3.02 g/kg and 3.85 g/kg, 41 

which was higher than the average content of BNC (1.64 g/kg and 2.08 g/kg). FNC 42 

dominated both MAOC and POC, and its contribution was higher than the contribution 43 

of BNC. Thid, through regression analysis and random forest modeling, we identified 44 

key environmental drivers of MNC dynamics: mean annual rainfall (MAP), electrical 45 

conductance (EC), and soil total nitrogen(TN) emerged as primary regulators in surface 46 

soils (0-20cm), while available potassium(AK), SOC, and mean annual temperature 47 

(MAT) dominated deeper soil layers (20-100 cm). This research by: 1) establishing the 48 

vertical distribution patterns of MNC and SOC fractions in soil profiles; 2) quantifying 49 
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the relative contributions of MNC to SOC fractions across different grassland 50 

ecosystems soil profiles and elucidating their environmental controls, offering a deeper 51 

understanding of the mechanisms driving MNC to soc fractions accumulation in diverse 52 

grassland ecosystems, and provide data support for further research on the 53 

microbiological mechanisms of soil organic carbon formation and accumulation in arid 54 

and semi-arid regions.  55 

Key words ： Grassland types, Fungal necromass carbon (FNC), Bacterial 56 

necromass carbon (BNC), Mineral-associated organic carbon (MAOC), Particulate 57 

organic carbon (POC), Influencing factors  58 
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1 Introduce 59 

 Soil organic carbon (SOC) is the largest carbon reservoir in grassland ecosystems 60 

and is strongly influenced by vegetation and microorganisms under certain 61 

conditions(Lehmann and Kleber, 2015). Microbial necromass carbon (MNC) is a 62 

crucial source of SOC, and its formation and accumulation processes vary significantly 63 

across different grassland types and SOC fractions, leading to varying contributions to 64 

SOC(Deng and Liang, 2022). The partitioning of SOC into particulate organic carbon 65 

(POC) and mineral-associated organic carbon (MAOC) provides critical insights into 66 

carbon stabilization mechanisms.While POC primarily originates from plant residues, 67 

with a high C:N ratio and rapid turnover rate, represents the more labile carbon pool, 68 

MAOC is mainly derived from microbial sources, with a slower turnover rate, allowing 69 

it to persist in the soil for centuries, thus playing a vital role in long-term SOC 70 

stabilization(Angst et al., 2021; Wang et al., 2021b). The proportion of microbial and 71 

plant-derived necromass carbon varies due to microbial decomposition 72 

processes(Bölscher et al., 2024), leading to significant differences in the contribution 73 

of microbial-derived carbon to MAOC and POC formation. Recent advances in soil 74 

organic matter research have revealed that microbial-derived carbon contributes 75 

approximately 52% to MAOC, while plant-derived carbon contributes about 40% to 76 

POC(Liang et al., 2019). Therefore, underscore the necessity to investigate the 77 

microbial necromass carbon contribution to SOC fractions, which is fundamental for 78 

accurately evaluating the environmental benefits and carbon sequestration potential of 79 

ecological conservation initiatives.(Hou et al., 2024). 80 

The accumulation of microbial necromass carbon in grassland ecosystems is 81 

governed by a complex interplay of biotic and abiotic factors(Li et al., 2017). Variations 82 
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in plant biomass and diversity across different grassland types significantly influence 83 

soil physicochemical properties and microbial community structure, while land use 84 

patterns, soil depth, soil nutrients, and climatic conditions further influence the 85 

accumulation of MNC(Yang et al., 2024). Recent studies have provided the substantial 86 

contribution of mnc to SOC pools, Wang et al.(Wang et al., 2021a) found that nearly 87 

47% contributes in the 0-20 cm soil layer of grasslands. Cotrufo et al.(Cotrufo et al., 88 

2019) demonstrated that MAOC contributes over 50% to SOC accumulation in 89 

grasslands, highlighting its critical role in carbon stabilization. Notably, He et al.(He et 90 

al., 2022) observed that the accumulation of MNC in alpine grasslands is closely related 91 

to soil depth. Liao et al.(Liao et al., 2023) found that necromass carbon content in the 92 

0-5 cm and 5-20 cm soil layers of grasslands on the Loess Plateau ranges from 0.69 to 93 

16.41 g/kg. Additionally, drought thresholds and soil stoichiometric ratios are critical 94 

factors influencing microbial necromass carbon accumulation in grasslands(Hao et al., 95 

2021). Dou et al. highlighted that microbial necromass carbon is stored more in the 96 

MAOC fraction across different grassland types and soil layers, with soil bulk density, 97 

pH, and total organic carbon being the primary factors influencing its contribution to 98 

SOC accumulation. However, our understanding of MNC dynamics remains 99 

incomplete, most studies focus on the 0-20 cm and 20-40 cm soil layers, with limited 100 

research on microbial necromass carbon in deeper soil layers (>60 cm), this knowledge 101 

gap is particularly pronounced in ecologically transitional zones, such as Ningxia, 102 

which encompasses diverse grassland types representative of northern Chinese 103 

ecosystems. 104 

While previous research in Ningxia has primarily focused on conventional SOC 105 

parameters (e.g., soil carbon density, storage, and spatial distribution of water-soluble 106 
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organic carbon), critical knowledge gaps persist regarding the dynamics of MAOC and 107 

POC fractions, particularly the contribution of microbial necromass carbon to their 108 

accumulation. Therefore, this study addresses these gaps by investigating the vertical 109 

distribution (0-100 cm) of SOC fractions and microbial necromass carbon across 110 

different grassland types, while identifying the key drivers influencing MNC 111 

contribution to MAOC and POC accumulation. By elucidating the microbial 112 

mechanisms of SOC formation and accumulation in different grassland types and 113 

provides crucial insights for optimizing grassland management strategies and 114 

supporting regional carbon neutrality objectives, at the same time, it provides a 115 

theoretical basis and data support for the realization of the regional “dual-carbon” goal. 116 

2 Materials and Methods 117 

2.1 Study Area 118 

The study area is located in Ningxia Hui Autonomous Region, China (35°14′–119 

39°23′ N, 104°17′–107°39′ E), encompassing an area of 66,400 km². Situated in the 120 

northern part of China's geological "north-south central axis," Ningxia lies between the 121 

North China Plain, the Alxa Plateau, and the Qilian Mountains. The region experiences 122 

a typical continental semi-humid to semi-arid climate, with scarce and unevenly 123 

distributed precipitation, primarily concentrated from July to September. The average 124 

annual precipitation is 289 mm, with low temperatures (average annual temperature: 5–125 

8°C), large temperature variations, long winters, and high evaporation rates (average 126 

annual evaporation: 1250 mm). Ningxia is one of the three pilot provinces for China's 127 

climate change adaptation research, with grasslands covering 47% of its land area, 128 

encompassing most of the northern Chinese grassland types(Zhang et al., 2025). 129 
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2.2 Site Selection and Soil Sampling 130 

To capture the ecological diversity along the precipitation gradient from south to 131 

north, four grassland types were selected: meadow steppe (MS), typical steppe (TS), 132 

desert steppe (DS), and steppe desert (SD) (Fig. 1). The number of sampling sites for 133 

each grassland type was proportional to their respective areas: CD (5 sites), HM (7 134 

sites), DX (5 sites), and CH (5 sites). The latitude, longitude, and elevation of each site 135 

were recorded, and mean annual temperature (MAT) and annual precipitation (MAP) 136 

were obtained from global climate databases. At each site, three 20 × 20 m plots were 137 

established, with a minimum distance of 20 m between plots. Soil samples were 138 

collected from 0-20 cm, 20-40 cm, and 40-100 cm layers using a soil auger, mixed 139 

thoroughly, and air-dried in the laboratory. After removing plant roots and gravel, the 140 

soil was sieved through 2 mm and 0.15 mm sieves for MAOC, POC, and soil 141 

physicochemical property analyses. Additionally, 4-5g of soil was reserved for amino 142 

sugar analysis. Vegetation surveys were conducted in three randomly selected 1 × 1 m 143 

subplots within each plot (Table 1). 144 

 145 

Fig.1 Distribution of the sampling sites in different grassland types. meadow steppe (MS), typical steppe 146 

(TS), desert steppe (DS), and steppe desert (SD) 147 
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Table 1 Overview of sampling sites of grassland types 148 

Grassland 

types 

Longitude 

(E) 

Latitude 

（N） 

Elevation 

(m) 

MAP 

(mm) 

MAT 

(℃) 
Domain vegetation 

TS1 106°30′45.03″ 36°45′6.57″ 1973 380 7.0 
Tansy(Tanacetum vulgare) 

Altai Hawkweed(Aster altaicus) 

Needlegrass(Stipa capillata) 

Sedge (Carex) 

TS 2 106°16′3.48″ 36°24′23.8″ 1950 391 7.7 

TS 3 106°24′46.39″ 36°12′17.30″ 1859 432 7.0 

TS 4 106°48′14.38″ 36°1′8.24″ 1679 470 7.7 

TS 5 106°34′54.64″ 36°13′56.39″ 1743 444 7.2 

MS1 105°37′36.66″ 36°27′6.49″ 2653 384 4.6 Large-eared Saussurea 

Baikal Needlegrass 

White Wormwood (Stipa 

baicalensis) 

Meadow-rue (Thalictrum) 

 MS 2 105°37′6.92″ 36°13′58.70″ 2492 420 5.5 

MS 3 106°7′11.55″ 35°54′56.04″ 2246 457 5.1 

MS 4 106°13′46.53″ 35°29′47.80″ 2486 563 4.4 

MS 5 106°14′15.35″ 35°40′49.79″ 2247 496 5.1 

DS1 107°2′59.10″ 38°4′58.89″ 1474 285 7.6 Short-flowered Needlegrass (Stipa 

breviflora) 

Seablite (Suaeda glauca) 

Russian Thistle (Salsola collina) 

 Bush Clover (Lespedeza) 

Intermediate Peashrub (Caragana 

intermedia) 

DS2 106°59′50.93″ 37°53′27.65″ 1430 277 8.0 

DS 3 106°28′44.93″ 37°26′28.69″ 1362 273 9.0 

DS 4 105°31′49.79″ 36°44′59.79″ 1807 290 8.0 

DS 5 105°25′36.86″ 37°8′51.70″ 1720 252 7.9 

DS 6 105°1′40.06″ 37°14′24.23″ 1843 229 7.2 

DS 7 105°44′38.66″ 37°23′26.63″ 1410 228 9.4 

SD1 106°28′14.83″ 38°20′38.9″ 1169 197 8.5 Komarov's Swallowwort 

(Cynanchum komarovii) 

White Spiny Shrub 

(Cynanchumkomarovii) 

Pearl Russian Thistle  

(salsola passerina) 

SD 2 106°29′34.37″ 38°6′44.67″ 1228 220 9.2 

SD 3 106°5′16.86″ 37°37′50.45″ 1323 237 9.1 

SD 4 105°57′47.86″ 38°38′53.99″ 1359 233 5.8 

SD 5 104°41′47.20″ 37°25′58.14″ 1652 192 8.0 

2.3 Measurement Methods 149 

2.3.1 Soil Physicochemical Properties 150 

Soil bulk density (BD) was determined using the core method, employing a 100 151 

cm³ ring knife (5 cm height, 5.05 cm diameter). Soil water content (SWC) was assessed 152 

via the oven-drying method, where fresh soil was dried at 102°C until a constant weight 153 

was achieved. Soil pH was measured using a pH meter (pHS-3C) with a soil-to-water 154 

ratio of 1:2.5 (w/v). Soil organic carbon (SOC) was quantified using the K₂Cr₂O₇ 155 
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external heating method, followed by titration with 0.1 M FeSO₄. Total nitrogen (TN) 156 

and available nitrogen (AN) were determined using the Kjeldahl method. Total 157 

phosphorus (TP), available phosphorus (AP), and available potassium (AK) were 158 

measured using standard protocols. Total carbon (TC) was analyzed using the 159 

potassium dichromate external heating method(Chai et al., 2024; Zhang et al., 2021). 160 

Soil electrical conductivity (EC) was measured using a conductivity meter.  161 

2.3.2 MAOC and POC Measurement 162 

MAOC and POC were separated using a density fractionation method with a 163 

sodium hexametaphosphate solution (1.7 ± 0.02 g/cm³), followed by the removal of 164 

inorganic carbon using 0.5 mol/L HCl, and analyzed using a carbon-nitrogen 165 

analyzer(Sokol et al., 2019b). 166 

2.3.3 Amino Sugar Measurement 167 

Amino sugars were measured according to the method described by Indorf et 168 

al.(Indorf et al., 2011). Soil samples underwent hydrolysis, purification, and 169 

derivatization, followed by gas chromatography (GC) analysis to determine four amino 170 

sugar derivatives: glucosamine (GlcN), mannosamine (ManN), galactosamine (GalN), 171 

and muramic acid (MurA). Microbial necromass carbon was calculated using the 172 

optimized formulas by Hu et al. (Hua et al., 2024)： 173 

                  BNC = MurA × 31.3                                       (1) 174 

 FNC = (
𝐺𝑙𝑐𝑁

179.17
− 1.63 ×

𝑀𝑢𝑟𝐴

251.23
× 179.17 × 10.8 175 

             = (GlcN − 1.16 × MurA) × 10.8                            (2) 176 

                  TNC =FNC+BNC                   (3) 177 
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Where FNC is fungal necromass carbon, BNC is bacterial necromass 178 

carbon, TNC is total necromass carbon, and GlcN and MurA are the 179 

concentrations of glucosamine and muramic acid in the soil, respectively. 180 

The molecular weights of GlcN and MurA are 179.17 and 251.23, 181 

respectively, and 31.3 is the conversion factor for bacterial muramic acid 182 

to bacterial necromass carbon. 183 

2.4 Data Analysis 184 

Data were organized using Excel 2023 and Word 2023 and statistical calculations 185 

(i.e., correlations and significant differences) were conducted using the SPSS 20.0 186 

statistical software package (SPSS Inc, Chicago, USA). One-way, two-way ANOVA 187 

and LSD tests were used to assess the significance of the differences among the different 188 

sampling sites. The liner regression analysis and graphs were created using Origin 2021. 189 

Principal component (PC) analysis and random forest modeling were conducted using 190 

R (version 4.3.1), with packages including "ggplot2," "tidyverse," "randomForest," 191 

"rfUtilities," and "rfpermute". 192 

3 Results and Analysis  193 

3.1 Soil Physicochemical Properties Across Different Grassland Types 194 

Significant vertical variations in soil properties were observed across the 0-100 cm 195 

soil profile among different grassland types (Fig.2). In meadow steppe (MS) and typical 196 

steppe (TS), the 0-20 cm layer showed significantly higher SWC compared to the 20-197 

40 cm and 40-100 cm layers. Conversely, desert steppe (DS) and steppe desert (SD) 198 

displayed an inverse trend, with lower SWC in the upper layers. SOC and TN were 199 

markedly higher in MS and TS than in SD and DS, with no significant differences 200 

observed among the three soil layers in DS and SD (p>0.05). TC and AK exhibited 201 
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significant differences between the 0-20 cm and 40-100 cm layers across all grassland 202 

types, though no notable differences were found between the 20-40 cm and 40-100 cm 203 

layers. Notably, TC was lowest in the 0-20 cm layer, while AK peaked in this layer. BD 204 

and available AP showed minimal variation across grassland types, whereas EC varied 205 

significantly within the same soil layer across different grasslands. 206 

 207 

Fig.2 Characteristics of Soil Physicochemical Properties in 0-100 cm Under Different Vegetation Types 208 

SWC: Soil water content; BD: Bulk density; TN: Total nitrogen; TC: Total carbon; TP: Total phosphorus; AK: 209 

Available potassium; AP: Available phosphorus; AN: Available nitrogen; EC: Electrical conductance. Significant 210 

differences of the same grassland types in different soil layers *:p<0.05；**:p<0.01; ***: p<0.001; Different 211 

lowercase letters indicate significant differences between different grassland types in same soil layer (p < 0.05). 212 
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3.2 Variations in MAOC and POC content across different grassland 213 

types 214 

MAOC and POC contents were highest in MS, followed by TS and DS, with SD 215 

having the lowest content. MAOC content decreased with soil depth, except in DS. 216 

POC content in MS and DS was higher in the 20-40 cm layer than in the 0-20 cm layer, 217 

with significant differences among the three soil layers. In the 0-20 cm layer, MAOC 218 

content showed significant differences among grassland types, except between SD and 219 

HM. In the 20-40 cm and 40-100 cm layers, MAOC and POC contents varied 220 

significantly across grassland types. In HM, MAOC content was higher in the 20-40 221 

cm layer than in the 0-20 cm layer, while POC content showed the opposite trend. The 222 

40-100 cm layer had the lowest MAOC and POC contents across all grassland types 223 

(Fig. 3). 224 

  225 

Fig.3 Contents of MAOC and POC in 0-100 cm soil layers under different grassland types 226 

Different uppercase letters indicate significant differences in different vegetation types in the same soil layer, and 227 

different lowercase letters indicate significant differences in different soil layers under the same vegetation type 228 

(p<0.05). 229 

3.3 Characteristics of changes in MNC and proportion of MAOC and 230 

POC in different grassland types 231 

3.3.1 Characterization of changes in the content and proportion of MNC in MAOC 232 

In the 0-20 cm soil layer, the contents of BNC, FNC, and TNC within MAOC 233 

ranged from 1.5–4.0 g/kg, 4.2–6.6 g/kg, and 3.5–10.6 g/kg, respectively. These values 234 
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were significantly higher than those observed in the 20-40 cm and 40-100 cm layers (p 235 

< 0.05). In the 20-40 cm layer, CH exhibited the lowest BNC content (0.43 g/kg), while 236 

HM recorded the lowest FNC content (1.69 g/kg). The TNC content across the 0-100 237 

cm layer followed the order: MS > TS > DS > SD, with MS showing significant 238 

differences compared to other grassland types (p < 0.05, Fig. 4).  The FNC/BNC ratio, 239 

which reflects the relative contributions of fungi and bacteria to MNC, demonstrated a 240 

significant positive correlation across all soil layers (0-20 cm: R² = 0.79, p < 0.0001; 241 

20-40 cm: R² = 0.63, p < 0.0001; 40-100 cm: R² = 0.43, p < 0.001). Notably, SD had a 242 

significantly higher FNC/BNC ratio than other grassland types (p < 0.05, Fig. 4). FNC 243 

contributed 2.65–4.63 times more to MNC than BNC in the 0-20 cm layer, 2.06–10.17 244 

times in the 20-40 cm layer, and 2.30–8.03 times in the 40-100 cm layer (Fig. 4). 245 

In the 0-20 cm layer, DS exhibited a higher BNC/MAOC ratio (35%) compared to 246 

MS (28%), TS (18%), and SD (14%), with significant differences (p < 0.05, Fig.6). The 247 

FNC/MAOC ratio for DS (42%) was lower than that of MS (48%) but higher than TS 248 

(41%) and SD (29%), with SD showing significant differences from other grassland 249 

types. DS and MS had similar TNC/MAOC ratios (77%), which were higher than those 250 

of TS (66%) and SD (44%), with significant differences observed (p < 0.05). In the 20-251 

40 cm layer, MS had a higher BNC/MAOC ratio (21%) than DS (15%), TS (12%), and 252 

SD (5%), with significant differences among grassland types (p < 0.05). The 40-100 cm 253 

layer exhibited trends similar to those in the 0-20 cm layer. The contributions of BNC 254 

and FNC to MAOC were positively correlated in the 0-20 cm layer (R² = 0.36, p < 255 

0.001), but no significant correlations were found in the 20-40 cm and 40-100 cm layers 256 

(R² = 0.03 and 0.05, respectively, p > 0.05) (Fig. 6). 257 
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 258 
Fig.4  Contribution of FNC, BNC in TNC at 0-100 cm under different grassland types 259 

 260 

Fig.5 Contents of BNC、BNC and FNC in MAOC at 0-100 cm under different grassland types 261 
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 262 

Fig.6 Contribution of BNC,FNC and TNC in MAOC at 0-100 cm soil layer under grassland types 263 

3.3.2 Characterization of changes in the content and proportion of MNC in POC 264 

In the 0-100 cm soil layer, the contents of BNC and TNC in POC exhibited similar 265 

trends across various grassland types. Specifically, MS, DS, and SD showed a gradual 266 

decrease in POC content with increasing soil depth, whereas TS displayed an initial 267 

increase followed by a subsequent decline. In contrast, FNC consistently decreased with 268 

soil depth. Within the 0-20 cm layer, the contents of BNC, FNC, and TNC in POC 269 

ranged from 0.9–4.1 g/kg, 2.9–9.4 g/kg, and 2.9–9.6 g/kg, respectively. In the deeper 270 

40-100 cm layer, these values decreased to 0.5–3.0 g/kg, 1.0–4.2 g/kg, and 2.1–5.9 g/kg, 271 

respectively, with significant differences observed between the 0-20 cm and 40-100 cm 272 

layers (p < 0.05, Fig. 7). The contributions of BNC to POC were 13%–31%, 9%–24%, 273 

and 12%–25% in the 0-20 cm, 20-40 cm, and 40-100 cm layers, respectively (Fig.8). 274 

Similarly, FNC contributed 29%–41%, 19%–38%, and 16%–41%, while TNC 275 

contributed 42%–72%, 43%–58%, and 39%–54% to POC in the respective layers. 276 
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 277 

Fig.7 Contents of BNC, FNC and TNC in POC at 0-100 cm under different grassland types 278 

 279 

Fig.8 Contribution of BNC, FNC and TNC in POC at 0-100 cm under different grassland types 280 

3.4 Relationship between MNC in SOC fractions and environmental and 281 

soil factors 282 

Correlation analysis shows that MAOC, BNC/MAOC and TNC/MAOC, POC 283 

have a significant positive correlation with environmental factors (MAP, Elevation), 284 

SWC, TN, TC, AK, AN, SOC, TP, AP. There is a significant negative correlation with 285 

MAT. There is a negative correlation with BD, but the correlation in some cases is not 286 

significant. Among them, MAT and DB are significantly negatively correlated with 287 

FNC/POC and TNC/POC respectively; EC has a significant negative correlation with 288 
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FNC/MAOC and FNC/POC; pH has a significant negative correlation with MOC, POC, 289 

BNC/MAOC, TNC/MAOC, TNC/POC (Fig. 9). 290 

The soil properties of different grassland types exhibited significant variations 291 

between the 0-20 cm soil layer and the deeper 20-40 cm and 40-100 cm layers. The 292 

contribution values of PC1 and PC2 were 44.6% and 15.8%, respectively. Consequently, 293 

we conducted a random forest model prediction and analysis on the soil properties 294 

influencing residue carbon accumulation, stratified into the 0-20 cm and 20-100 cm soil 295 

layers (Fig. 9). 296 

The random forest model (Fig. 10) predicted the key factors affecting the 297 

accumulation of FNC, BNC, and TNC in different soil layers across various grassland 298 

types. Environmental factors such as MAP, Elevation, SOC, SWC, and EC were 299 

identified as significant influencers for the accumulation of FNC, BNC, and TNC in 300 

both the 0-20 cm and 20-100 cm soil layers. Additionally, AN and AK were important 301 

factors in the 0-20 cm layer, while AN and pH played crucial roles in the 20-100 cm 302 

layer.. 303 

 304 

Fig.9 Correlation of MAOC、POC and MNC with environmental factors and PC analysis of soil properties 305 

in 0-100cm soil layer under different grassland types 306 
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 307 

Fig.10 The relative importance of envieonmental and soil factors on MNC 308 

4 Discussion 309 

4.1 Distribution characteristics of SOC fractions contents in different 310 

grssland types 311 

Vegetation is a significant source of SOC, with the extent of root development and 312 

the composition of root exudates from diverse vegetation types exerting a direct 313 

influence on the content and distribution of SOC and its fractions(Zhao et al., 2023; 314 

Shao et al., 2021). In this study, the contents of mineral-associated organic carbon 315 

(MAOC) and particulate organic carbon (POC) were higher than those reported by 316 

Zhang et al.(Zhang et al., 2024), Shen et al.(Shen et al., 2024), Ji et al.(Ji et al., 2020). 317 

This divergence can be attributed to variations in the input and output of organic carbon 318 

fractions, driven by differing hydrothermal conditions that affect aboveground 319 

vegetation. Additionally, researchers have noted that climate, soil, and vegetation 320 

factors significantly influence soil carbon content, with vegetation factors accounting 321 

for up to 55% of the variation in SOC accumulation(Huang et al., 2024). This study, 322 

encompassing the entire natural succession sequence in the Ningxia region, included a 323 
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diverse array of plant types. The experimental period experienced increased rainfall 324 

compared to previous years, coupled with enhanced vegetation diversity and density, 325 

which collectively contributed to a greater influx of organic carbon into the soil. 326 

Consequently, this led to elevated levels of SOC and its fractions, particularly MAOC 327 

and POC.  328 

In the 0-100 cm soil layer, the average contents of MAOC and POC across 329 

different grassland types followed the order: meadow steppe (MS) > typical steppe 330 

(TS) > desert steppe (DS) > steppe desert (SD). Significant differences were observed 331 

between soil layers and grassland types (p < 0.05 Fig2). This is because MS, compared 332 

to the other three grassland types, has higher vegetation coverage, greater root 333 

density and more abundant nutrient conditions, resulting in higher total organic carbon 334 

content and, consequently, higher soil carbon fractions(Hu et al., 2025). This study also 335 

found that the average POC content across different grassland types was higher than 336 

that of MAOC. While MAOC content decreased with soil depth, POC content in MS 337 

and TS initially increased and then decreased. Possible reasons for this include: 1) The 338 

theoretical upper limit of mineral binding with carbon in the soil, as total organic carbon 339 

increases, MAOC may reach saturation, reducing its proportion and thereby increasing 340 

the relative proportion of POC. Thus, in grasslands or soil layers with higher total 341 

organic carbon, POC content tends to be higher than MAOC(Cotrufo et al., 2019; Zhou 342 

et al., 2024; Zhou et al., 2023). 2) Compared to DS and SD, MS and TS experience 343 

higher rainfall intensity and a more humid, colder climate(He et al., 2022; Jiang et al., 344 

2024). Increased rainfall enhances vegetation biomass and carbon input into the soil, 345 

promoting POC formation and causing MAOC to leach into deeper layers. This 346 

explains the observed decrease in MAOC content with depth and the higher POC 347 

content in surface layers. 3) Increased plant biomass input has been shown to elevate 348 

POC content (Zhou et al., 2024). Given that MS and TS exhibit higher vegetation 349 

biomass per unit area compared to SD and DS, and considering that surface POC lacks 350 

physical protection, it is more susceptible to microbial decomposition (Liao et al., 2022). 351 
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Therefore, in MS and TS, POC accumulation in the 20-40 cm layer is higher than in the 352 

0-20 cm layer (p<0.05, Fig3). 4) Carbon inputs originate from both aboveground and 353 

belowground sources. In the 0-20 cm layer, dense surface vegetation, abundant litter, 354 

and extensive root systems contribute to increased dead root biomass, favoring POC 355 

accumulation(Liu et al., 2018). This also significantly influences soil aggregate 356 

formation and internal pore structure, enhancing POC quality(Zhang et al., 2020; Rocci 357 

et al., 2021), while having little effect on MAOC and SOC. Additionally, the desert 358 

shrub Caragana intermedia typically has a high root-to-shoot ratio(Table 1), with well-359 

developed root systems, which also contributes to higher POC content. In deeper soil 360 

layers, where nutrient availability is significantly reduced, the rhizosphere priming 361 

effect theory suggests that microorganisms may secrete enzymes and release 362 

metabolites such as amino acids to accelerate turnover rates, leading to the utilization 363 

of MAOC and POC by microorganisms(Dijkstra et al., 2021; Cui et al., 2023). As a 364 

result, carbon fraction content in deeper layers is lower than in surface and subsurface 365 

layers, consistent with the findings of Hou and Xue et al.(Hou et al., 2024; Xue et al., 366 

2023).  367 

4.2 Contribution of MNC to different carbon fractions in different 368 

grassland types 369 

Microbial necromass is also a key source of stable SOC pools(Min et al., 2024). 370 

The proportion of MNC in both MAOC and POC serves as a key indicator of its 371 

contribution to these carbon fractions(Hu et al., 2022). Our findings reveal that the 372 

average content of TNC in MAOC and POC across different grassland types within the 373 

0-100 cm soil layer follows a distinct order: MS > TS > DS > SD, with significant 374 

differences (p < 0.05, Fig. 5 and 7). Notably, TNC content generally decreased with soil 375 

depth, except in TS, where POC-associated TNC exhibited an initial increase followed 376 

by a decline. This result partially aligns with the findings of Wang et al. and Qin et 377 

al.(Wang et al., 2021a; Hou et al., 2024), suggesting that the gradient in carbon input 378 

quantity and quality from SD to MS may enhance the efficiency of the "microbial 379 
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carbon pump"(Zhu et al., 2020). Furthermore, the 0-20 cm soil layer, characterized by 380 

higher nutrient availability and more diverse microbial communities compared to 381 

deeper layers(He et al., 2024b), supports elevated microbial metabolic activity and 382 

turnover rates, thereby generating greater necromass production(Spohn et al., 2020; Li 383 

et al., 2024), This explains the observed decline in TNC within MAOC as soil depth 384 

increases. Furthermore, the ratio of FNC to BNC can indirectly reflect the stability of 385 

the microbial environment (Fig. 4). A higher ratio indicates slower soil nutrient cycling 386 

and lower microbial nutrient utilization, making deeper soil layers less susceptible to 387 

external disturbances(Camenzind et al., 2021). Consequently, total organic carbon in 388 

soil fractions decreases with soil depth. 389 

We also found that FNC content in MAOC and POC was consistently higher than 390 

BNC in the 0-100 cm soil layer (Fig. 5 and 7), and FNC's contribution to MAOC and 391 

POC was also consistently higher than BNC (Fig. 6 and 8). This disparity can be 392 

attributed to the superior microbial utilization efficiency and higher carbon-to-nitrogen 393 

ratios of fungi, which facilitate more efficient necromass production compared to 394 

bacteria. Griepentrog et al.(Griepentrog et al., 2014) found that newly formed FNC is 395 

2.6–4.5 times that of BNC. Structural and compositional differences between bacterial 396 

and fungal cell walls further influence their stability. Fungal cell walls, predominantly 397 

composed of chitin and melanin, degrade more slowly, conferring greater stability(Zhao 398 

et al., 2025), Moreover, the thicker cell walls and hyphae of fungi, coupled with their 399 

smaller surface area-to-volume ratios, promote the formation of large molecular 400 

polymers (Villarino et al., 2021), and enhance physical protection, leading to greater 401 

fungal necromass accumulation in soils. In contrast, bacteria are more likely to serve as 402 

nutrient sources under substrate-limited or nitrogen-limited conditions, rendering them 403 

more susceptible to microbial decomposition(Fernandez et al., 2019; Jia et al., 2017), 404 

which explains the lower BNC content. The importance of FNC has been emphasized 405 

in farmlands, grasslands and forests globally(Wang et al., 2021a), especially grasslands, 406 

where the chemical composition of BNC is more easily decomposed compared to 407 
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FNC(Chen et al., 2021). 408 

In summary, the average content of total microbial necromass carbon in MAOC 409 

and POC across different grassland types within the 0-100 cm soil layer was 4.73 and 410 

4.96 g/kg, respectively, with FNC content and contribution dominating. In the 0-20 cm 411 

layer, FNC and BNC contributed more significantly to MAOC, while their 412 

contributions shifted toward POC in the 20-40 cm and 40-100 cm layers as soil nutrient 413 

levels declined (Fig. 6 and 8). These results partially align with those of Sokol et 414 

al.(Sokol et al., 2019a; Sokol et al., 2022). In the 0-20 cm layer, MNC primarily enters 415 

POC through "extracellular modification," whereas in the 20-100 cm layer, it tends to 416 

integrate into the more stable MAOC via "intracellular turnover." 417 

4.3 Factors influencing the accumulation of MNC in different carbon 418 

fractions 419 

Biological and abiotic factors were the primary influences on the accumulation of 420 

MNC in soil(Chen et al., 2020b; Wang et al., 2021c). In this study, key environmental 421 

and soil properties—such asMAP, elevation, SWC, TN, TC, AK, AN, TP, and SOC—422 

were significantly correlated with mineral-associated organic carbon (MAOC), 423 

particulate organic carbon (POC), and the ratios of BNC/MAOC and TNC/MAOC (p 424 

< 0.05, Fig. 8). The relationship between MAP and SWC is particularly critical, as these 425 

factors are integral to soil nutrient cycling and energy flow(Mou et al., 2021), water 426 

availability enhances microbial growth and directly affects MNC accumulation (Hu et 427 

al., 2023). The increase in SWC can stimulate microbial activity, thereby promoting the 428 

formation and accumulation of MNC in the soil(Bell et al., 2009), On the other hand, 429 

the increase in SWC promotes plant growth and the input of organic matter into the soil, 430 

which increases the substrates available for microbial use, thus fostering microbial 431 

growth and the accumulation of MNC(Sokol et al., 2019a; Maestre et al., 2015). 432 

Compared to SD and DS, the relatively higher SWC in MS and TS to some extent 433 

explains the greater contribution of MNC in MS and TS to the organic carbon 434 

components. Higher levels of TN, TC, and TP promote microbial biomass growth, 435 
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indirectly facilitating the formation of microbial necromass(Wang et al., 2021a). 436 

Moreover, BNC and FNC, as well as microbial functions, are closely related to the 437 

dynamics of C pool and N pool. The microbial demand for N can lead to the reuse of 438 

MNC by soil microbial communities, and AN can prevents the decomposition of 439 

microbial necromass(Wang et al., 2024b). As elevation increases, the decomposition 440 

rate of organic matter decreases, resulting in the accumulation of organic carbon at 441 

higher altitudes, with MNC emerging as a significant contributor to SOC. POC, being 442 

more susceptible to environmental factors, likely reflects its plant-derived origin(Soong 443 

et al., 2020). Additionally, the correlation with AP may be explained by phosphorus 444 

deficiency in soil promoting the secretion of organic acids by plant roots, which can 445 

disrupt MAOC(Ding et al., 2021)，However, this conclusion requires further analysis 446 

and verification. Furthermore, MAT, EC, BD, and pH were significantly negatively 447 

correlated with MAOC, POC, and some necromass carbon fractions consistent with the 448 

findings of Wang et al.(Wang et al., 2024a) and Zhu et al.(Zhu et al., 2024). This may 449 

be because temperature affects soil microbial respiration. He et al.(He et al., 2011) 450 

found that the accumulation of MNC decreases with increasing temperature, while He 451 

et al.(He et al., 2024a) concluded through meta-analysis that both aboveground and 452 

belowground plant carbon inputs increase with temperature, influencing soil microbial 453 

community structure and ultimately leading to increased MNC accumulation. Soil BD 454 

reflects changes in soil structure and aeration; lower BD improves soil permeability, 455 

enhancing microbial turnover and carbon use efficiency(Spohn et al., 2016), thereby 456 

promoting MNC accumulation. Lower soil pH has been shown to facilitate the 457 

accumulation of FNC and BNC(Wang et al., 2021a), consistent with the findings of Liu 458 

et al.(Liu et al., 2024)、Cui et al.(Cui et al., 2023) and Gavazov et al.(Gavazov et al., 459 

2022). Additionally, lower pH environments is associated with higher MNC 460 

concentrations(Li et al., 2023), likely due to the ability of plant roots to acidify the soil 461 

by releasing small molecular organic acids(Fujii, 2014; Chen et al., 2020a), which in 462 

turn stimulates MNC accumulation(Wang et al., 2021b; Wang et al., 2021a). Conversely, 463 
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elevated pH limits MNC accumulation in SOC fractions, likely due to slower microbial 464 

turnover rates and reduced carbon use efficiency in alkaline soils (Malik et al., 2018; 465 

Tao et al., 2023). The influencing factors predicted by the random forest model were 466 

validated through correlation analysis. 467 

5 Conclusion 468 

This study provides a comprehensive analysis of the contribution of MNC to SOC 469 

fractions and its driving factors across diverse grassland types and soil layers. In the 0-470 

100 cm soil profile, the contents of MAOC and POC exhibited a consistent order across 471 

grassland types: MS > TS > SD > DS, with POC content generally higher than MAOC. 472 

MNC was dominated by FNC, which contributed more to MAOC and POC 473 

accumulation than BNC. A striking divergence was observed in the contribution of 474 

MNC to MAOC and POC accumulation between soil layers. In the 0-20 cm layer, FNC 475 

and BNC contributed more to MAOC accumulation than POC, while in the 20-100 cm 476 

layer, FNC and BNC contributed more to POC accumulation, showing an opposite 477 

trend between surface and deeper layers. Furthermore, the key drivers of MNC 478 

accumulation exhibited pronounced stratification across soil depths. In the 0-20 cm 479 

layer, the most influential factors on MNC accumulation were TN, MAP, and EC, while 480 

in the 20-100 cm layer, AK, SOC, and MAT. These findings not only elucidate the 481 

complex interplay between environmental factors and soil nitrogen-carbon dynamics 482 

but also provide a nuanced understanding of how these interactions vary with soil depth 483 

and grassland type, offering valuable implications for ecosystem management under 484 

changing environmental conditions. 485 
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